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Abstract 

Background: There are a variety of approaches being used for malaria surveillance. While active and reactive case 
detection have been successful in localized areas of low transmission, concerns over scalability and sustainability keep 
the approaches from being widely accepted. Mobile health interventions are poised to address these shortcomings 
by automating and standardizing portions of the surveillance process. In this study, common challenges associated 
with current data aggregation methods have been quantified, and a web-based mobile phone application is pre-
sented to reduce the burden of reporting rapid diagnostic test (RDT) results in low-resource settings.

Methods: De-identified completed RDTs were collected at 14 rural health clinics as part of a malaria epidemiology 
study at Macha Research Trust, Macha, Zambia. Tests were imaged using the mHAT web application. Signal intensity 
was measured and a binary result was provided. App performance was validated by: (1) comparative limits of detec-
tion, investigated against currently used laboratory lateral flow assay readers; and, (2) receiver operating characteristic 
analysis comparing the application against visual inspection of RDTs by an expert. Secondary investigations included 
analysis of time-to-aggregation and data consistency within the existing surveillance structures established by Macha 
Research Trust.

Results: When compared to visual analysis, the mHAT app performed with 91.9% sensitivity (CI 78.7, 97.2) and speci-
ficity was 91.4% (CI 77.6, 97.0) regardless of device operating system. Additionally, an analysis of surveillance data from 
January 2017 through mid-February 2019 showed that while the majority of the data packets from satellite clinics 
contained correct data, 36% of data points required correction by verification teams. Between November 2018 and 
mid-February 2019, it was also found that 44.8% of data was received after the expected submission date, although 
most (65.1%) reports were received within 2 days.

Conclusions: Overall, the mHAT mobile app was observed to be sensitive and specific when compared to both cur-
rently available benchtop lateral flow readers and visual inspection. The additional benefit of automating and stand-
ardizing LFA data collection and aggregation poses a vital improvement for low-resource health facilities and could 
increase the accuracy and speed of data reporting in surveillance campaigns.
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Background
In 2018, the World Health Organization (WHO) 
reported 228 million cases of malaria and 405,000 deaths 
[1]. Although malaria is endemic in 81 countries, 94% 
of malaria-attributable deaths occur in Africa. Approxi-
mately half of the world’s population is at risk of infec-
tion; current literature proposes that these estimates may 
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be significantly underestimating the true burden of dis-
ease [1–3]. The WHO relies on national and regional pro-
grammes within each country of interest to collect and 
report epidemiologic data and has published guidelines 
for operation of these systems [4]. From these guidelines, 
‘good-quality’ malaria surveillance data are understood 
to be a dataset that contains diagnostic results for every 
potential malaria patient, obtained by validated micros-
copy or rapid diagnostic testing. Additionally, collection 
of good-quality data ensures that all diagnostic results are 
classified correctly, are reported in a complete and con-
sistent manner, and that there is a mechanism in place to 
verify or audit the collected data [4]. These recommen-
dations outline the gold standard for malaria surveillance 
and data collection.

Within these guidelines however, the distinct objec-
tives of disease control and elimination campaigns neces-
sitate disparate approaches for surveillance. Countries 
whose disease burden is low are less likely to carry out 
universal coverage and testing that defines some malaria 
control campaigns [5]. In general, as disease prevalence 
in these countries decreases, due to the  sweeping inter-
ventions and wide-scale testing that accompany control 
campaigns, these campaigns become more expensive 
and unwieldy for detection of single cases or very small 
pockets of disease. Conversely, elimination programmes 
tend to be characterized by community-based testing at 
the individual health post level [5, 6]. One popular strat-
egy for this type of programme is active case detection 
(ACD) [7, 8]. ACD focuses on the detection of individ-
ual malaria cases at the community and household level 
within high-risk populations [6, 9]. In Zambia and other 
low- and middle-income countries (LMICs) approaching 
elimination, ACD is manifested in the form of a ‘test and 
treat’ strategy: febrile patients or at-risk asymptomatic 
patients are tested for infection and treated accordingly 
[6, 10, 11]. Additional active detection programmes, such 
as the reactive screen and treat programme utilized in 
Southern Province, Zambia, rely on teams of healthcare 
workers to travel to the household of an index case and 
screen all individuals within a certain radius [12]. While 
these techniques have proven effective, active and reac-
tive detection methods have the potential to be expen-
sive and time-consuming, based on the prevalence of 
disease and the intended length of the programme [13, 
14]. As public health stakeholders push for worldwide 
elimination, many LMICs are interested in simple, effec-
tive and inexpensive methods for improving collection 
and aggregation of surveillance data collected by these 
programmes.

With the current tools, even the most well-equipped 
health outpost in a high-burden, low-resource setting 
may struggle to meet WHO goals for surveillance data. 

This is particularly true when attempting to implement a 
possibly infrastructure-heavy intervention, such as reac-
tive screen and treat. Healthcare in LMICs varies widely, 
as many nations have different healthcare provisions; 
care often consists of treatment from community health 
workers (primary care) [15–17]. In certain low-income 
nations or regions, healthcare infrastructure is further 
strained by uneven access to more involved interven-
tions [17]. To this point, Africa has the lowest average 
health worker density in the world, with 90% of countries 
reporting below 10 medical doctors per 10,000 people 
[18]. While factors such as travel and cost can be prohibi-
tive, difficulty in accessing potentially malaria-positive 
patients with diagnostic tools is also compounded by the 
lack of available healthcare workers [19, 20].

In the last decade, mobile health (mHealth) has become 
a popular tool to address the challenges associated with 
traditional healthcare systems. mHealth is the utiliza-
tion of mobile communication technology to connect 
users directly with healthcare services and providers. 
The effect has been especially powerful in areas under-
served by traditional brick-and-mortar medical facili-
ties, such as LMICs [21, 22]. This is well-illustrated by a 
2013 HIV monitoring programme in Mozambique [23]. 
The Mozambique Ministry of Health implemented web-
based data collection for decentralized HIV monitoring 
in which point-of-care CD4 count devices equipped with 
wireless capabilities were distributed to health facilities 
across the country. Using this network, healthcare work-
ers were able to relay surveillance data directly to the 
Ministry of Health, including number of tests performed 
each day, any errors encountered, and quality control 
checks. As the programme scaled up, testing errors at the 
point of care (including failed controls and testing rea-
gent loss) were reduced from 13 to 5% and have remained 
stable, increasing confidence in the reliability and quality 
of the decentralized testing facilities across the country.

An increasing number of mHealth interventions have 
followed as a natural consequence of the high penetration 
of mobile phones into LMICs; subsequent developments 
in mobile network capacity have accelerated over the 
last two decades (Fig. 1A)[24]. Studies have already been 
undertaken to investigate the role of mobile phones in 
malaria case management [25–27]. Many of these inter-
ventions utilize short message service (SMS) to convey 
reminders regarding drug adherence or report collected 
data on rapid diagnostic test (RDT) detection rates. How-
ever, there has been little application of mobile phones in 
analysis and automated data recording and reporting. In 
an analysis of several mobile malaria RDT analysis appli-
cations, data from over 1,600 RDTs were collected and 
recorded by hand on paper data collection sheets before 
being imported manually to Microsoft Excel [28]. While 
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these applications were judged to have performed as 
well as the human eye in detecting positive and negative 
RDTs, they lacked the ability to automatically collate crit-
ical healthcare data. The challenges involved with devel-
oping confidential, accurate and integrated systems for 
healthcare information may discourage developers from 
attempting to go beyond surface-level mHealth inter-
ventions, and some currently available applications are 
hampered by poor sensitivity compared to visual inter-
pretation of tests [28, 29].

Mobile technology is uniquely poised to improve 
malaria surveillance campaigns. In this paper, the 
mobile health and treat system (mHAT) is presented 
as one solution to the challenges that elimination cam-
paigns currently face. mHAT is a mobile phone-based 
web application that utilizes image processing software 
to automatically detect test lines on commercially avail-
able RDTs and provide semi-quantitative results. These 
results are standardized within the platform and stored 
in a secure research database (REDCap) for automated 
downstream analytical surveillance efforts. For this pilot 
study, data collected using the mHAT app are compared 
to current data collection and surveillance practices in a 
highly functioning LMIC healthcare setting in Southern 

Province, Zambia, which has had renowned success with 
reactive screen and treat campaigns (Fig. 1B). The mHAT 
system takes advantage of available healthcare infrastruc-
ture through the use of RDTs and community healthcare 
workers, while also leveraging the ubiquity of mobile 
phones and their native reporting capabilities for surveil-
lance with improved accuracy and speed.

Methods
mHAT application
The mHAT app is a mobile-friendly, web application 
hosted on a development server at Vanderbilt Univer-
sity, Nashville, USA. For the duration of the study it was 
accessible in any web browser by its public IP address.

mHAT was designed as a web application (hosted by a 
webserver and running in the browser of a mobile device) 
rather than a native application that is downloaded and 
runs locally on the device. This decision was guided by 
the expected use case, and was influenced by the broad 
device compatibility, and the ease and speed with which 
software updates can be deployed, of web applications. 
The architecture described above can work on any web-
connected device (i.e., phones, tables, laptops, desk-
tops) and interchangeably across operating systems. The 
mHAT app does require network connectivity, but new 
developments that enable progressive web apps will allow 
future versions of the software to have similar functional-
ity offline as well.

Computer vision for analysis of RDTs is a substantial 
endeavour. These algorithms must be tolerant of light-
ing and background variations and different camera 
resolutions. A more thorough description of the techni-
cal implementation of a computer vision algorithm is 
detailed in Additional file 1. Here, the app use is briefly 
described. First, users input any information they would 
like to associate with this test (e.g., case ID, test ID, any 
other notes). From within the app, the user presses a but-
ton to take a photograph of the RDT they would like to 
analyse. Prior to taking the photograph, the web app asks 
to access the user’s GPS coordinates to assist with spatial 
infectious disease surveillance. Preliminary image pro-
cessing is performed and determines if the photograph 
must be retaken, or if it is suitable for full analysis. If the 
preliminary photograph is suitable, a preview image is 
presented to the user with annotations of key test fea-
tures. The user has the choice to accept this image and 
proceed with analysis, or they can elect to take another 
photograph and restart the process. If the user proceeds 
with analysis, the full results are presented to the user, 
including: a qualitative ‘Positive’/ ‘Negative’ result as well 
as the numerical values for test line signal, control sig-
nal and signal ratio. The result is transferred to a custom 
REDCap (a widely used, customizable research electronic 

Fig. 1 A The number of mobile phone subscriptions per 100 
people in World Bank low and middle-income countries from 
1990 to 2017. Arrows represent important developments in the 
telecommunications landscape of Zambia. B Malaria admissions and 
deaths at the Macha Hospital Children’s Ward after the initiation of a 
reactive screen and treat campaign in 2002–2003
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database) [30–32] project for storage, along with the user 
that uploaded the test information, GPS coordinates, and 
a timestamp. This information facilitates spatio-temporal 
surveillance, as well as allowing national healthcare sys-
tems to observe the locations of individual community 
healthcare workers and their teams. A detailed outline 
of the development of the mHAT software and image 
processing analysis has been included in the Additional 
file 1: Fig. S1).

For any new test, computer vision and image process-
ing features must be experimentally optimized. This is a 
result of the different shapes of cassettes, the colours of 
the test and control line signals, markings and brandings 
on the test cassettes, different spatial differences during 
manufacturing of each test. However, this process is rela-
tively straightforward, and with minimal effort can ena-
ble the use of the software to analyse a variety of tests. 
This optimization was performed for several malaria tests 
(including multiplexed tests with multiple test lines), 
multiple HIV test kits, schistosomiasis test kits, preg-
nancy and ovulation test kits. Since the algorithm utilizes 
feature recognition, it has the potential to automatically 
detect the type of test from the photograph, without 
additional user input. This would have obvious utility for 
organizations that heavily rely on point-of-care testing.

Laboratory RDT image‑processing, training and validation
Initial image-processing optimization was performed 
using SD Bioline Malaria Ag P.f. tests (Standard Diagnos-
tics, South Korea). D6 Plasmodium falciparum parasite 
was cultured in-house. Human whole blood (pooled, cit-
rate phosphate dextrose anticoagulated) was purchased 
from BioIVT. Samples were prepared by spiking whole 
blood with D6 parasite culture at 5000 p/μL and diluting 
serially by a factor of 2.5. The parasite-positive dilution 
series consisted of 6 total concentrations: 5,000, 2,000, 
800, 320, 128, and 51.2 parasites per μL of whole blood. A 
whole blood sample with no parasite culture was used as 
a negative control. These mock specimens were applied 
to the RDTs, which were run according to manufactur-
er’s instructions. Briefly, a 5-μL sample was added to the 
specimen well of the test; 4 drops of proprietary running 
buffer were then added to the diluent well, and the test 
was allowed to develop for 15 min at room temperature. 
After 15 min, photos were taken in the web-based mHAT 
app on both an iPhone 8 + (Apple, USA) and Samsung 
Galaxy J3 (Samsung, South Korea). All tests were ana-
lysed in method triplicate, resulting in 3 unique RDTs 
that were imaged for each parasite density. All mHAT 
results were automatically recorded and stored in a pre-
configured REDCap project. Immediately after mobile 
phone imaging, each test was removed from its plastic 
casing and the nitrocellulose lateral flow test strips were 

analysed on a Qiagen ESEQuant lateral flow reader (QIA-
GEN Lake Constance GmbH, Stokach, Germany). Lateral 
flow readers are useful laboratory- or clinic-based tools 
for objective RDT analysis [33]. However, these instru-
ments require continuous power, trained personnel, 
and cost thousands of dollars, making them unsuitable 
for field usage in remote settings. There are other opti-
cal approaches for RDT analysis [34, 35], but these have 
been demonstrated only in research settings and are not 
commercially available. Therefore, the QIAGEN reader 
represents one such tool that has been used previously 
as a benchmark for lateral flow assay analysis [36] and is 
commercially available.

RDT collection and imaging in Southern Zambia
Macha Research Trust (MRT) relies on several teams of 
researchers, physicians and community healthcare work-
ers to collect surveillance data and provide treatment 
for the population in and surrounding Macha, using a 
hub-and-spoke model of satellite clinics. Aggregate sur-
veillance data are validated quarterly by an independent 
team of MRT researchers, and collected weekly from 
each of the 14 MRT outposts in the area (Fig. 2).

RDT collection was performed in collaboration with 
the outpatient clinic (OPC) triage team and the field 
research team at MRT (Macha, Zambia), the latter as 
part of an existing Institutional Review Board-approved 
malaria epidemiology study. All patients were first 
screened by underarm temperature. In the OPC, SD Bio-
line Malaria Ag P.f. tests were performed for all patients 
presenting with a temperature at or above 37  °C. In the 
field, SD Bioline Malaria Ag P.f RDTs were performed for 
all patients presenting with a fever at or above 38 °C.

Upon completion of an RDT, the administering MRT 
clinical worker recorded the result in a physical ledger 
along with patient name age, village, history of travel, 
weight, blood pressure, pulse, and temperature. The 
data were not available to the mHAT app team. As the 
MRT clinicians recorded the necessary data for their 
reports, the RDT was imaged using the mHAT app 
and the result was recorded and stored in the REDCap 
database. While additional time elapsed may change 
the amount of blood clearance on RDTs, resulting 
in changes in contrast between the test line and the 
background of the nitrocellulose, RDTs were analysed 
by visual inspection immediately prior to being ana-
lysed by mHAT. The time from visual inspection of the 
RDT to successful mHAT analysis was under 1  min 
in most cases, with the exception of early tests using 
the first iteration of the mHAT app. This elapsed time 
was determined to be unlikely to introduce any sig-
nificant error. The number of image re-takes prior to 
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analysis and the binary mHAT result were additionally 
recorded. The image orientation and photo acceptance 

features were improved iteratively over the course of 
this pilot study.

Fig. 2 Map showing Macha Research Trust (MRT, red star) and each of the 14 rural clinics within the MRT catchment area (green crosses)
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mHAT optimization for field performance
A controlled laboratory environment is an idealized set-
ting for a mobile application that uses computer vision 
to analyse global health RDTs. To mitigate potential 
errors in photography resulting from an uncontrolled 
field setting, the study incorporated: (1) an automated 
checkpoint where the algorithm attempts to automati-
cally determine if a photograph is satisfactory for pro-
cessing; and, (2) a manual checkpoint where a user can 
determine if the photograph should be retaken. In addi-
tion, it was anticipated that adjustments to the image-
processing algorithms may improve field performance 
(Additional file 1: Fig. S2).

Analysis of current data collection and aggregation 
systems
As one of the leading medical research sites in Southern 
Zambia, and an active participant in the Zambian malaria 
elimination effort, MRT has a well-developed system for 
collection and verification of malaria RDT results. Data 
collection is performed using a network of clinic-based 
healthcare workers who summarize recorded data from 
clinic record legers at the end of each week. Every Mon-
day, one healthcare provider from each clinic aggregates 
the data from the past 7 days and enters it into an SMS 
message. This SMS is then sent to a member of the MRT 
data aggregation team who collates the data from the sat-
ellite sites into a single spreadsheet, which is then manu-
ally entered into a REDCap project.

Verification of this SMS data is performed quarterly. To 
verify the data, the verification team travels to each of the 
satellite clinics and compares reported data to the physi-
cal clinic ledger. Every physical entry describing either 
positive and negative RDT result is counted and the veri-
fication team notes the date and total for each week. All 
changes to the data are recorded on a physical copy of the 
SMS aggregate spreadsheet, and changes are recorded 
digitally upon return to the laboratory. If the tallies are 
divergent, the verification team resolves the disparity 
through a record re-count at the satellite clinic. The final 
corrected tally is noted in red ink on a physical copy of 
the collated SMS data. The verified and corrected data 
are then uploaded from Microsoft Excel to REDCap.

Observational analysis of this system was performed 
by collecting and evaluating the corrected spreadsheets 
from January 2017-February 2019. The number of cor-
rections was determined by comparing the number of 
correct (unaltered) data points to the number of cor-
rected (altered) data points for each clinic over time. Date 
and time data were collected from SMS records between 
November 2018 and February 2019.

Statistical analysis
Experiments to determine the limit of detection were 
performed in triplicate, with the average and standard 
deviation being calculated at each parasite density. The 
limit of detection was calculated using  3SDblank divided 
by the slope of the regression of the linear region of the 
data.

Results
mHAT RDT reader performance validation
The limit of detection for the mHAT app was determined 
to be comparable to a commercial lateral flow reader 
(Fig.  3A). For all devices used, signal intensity mono-
tonically increases as the parasite density in the sample 

Fig. 3 iPhone images of the RDT titration series used to determine 
the mHAT limit of detection (A). Limit of detection analyses were 
performed in parasitized blood using both test line signal alone (B) 
and test line to control line signal ratio (C) on two mobile phones 
and a commercial lateral flow reader. Analytical sensitivity for the 
mHAT app on iOS and Android platforms is on the same order as the 
sensitivity of the commercial lateral flow reader
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increases; at higher concentrations the rate of increase 
slows and the test line signal intensity begins to pla-
teau. Both test line signal and the ratio of test line and 
control line signal were considered as threshold metrics. 
Using the test line signal, the limits of detection were 
found to be 15.0 ± 3 parasites/μL, 14.9 ± 4 parasites/μL 
and 6.12 ± 2 parasites/μL using the iPhone 8 + , Sam-
sung Galaxy J3 and ESEQuant LFR, respectively (Fig. 3B). 
When considering signal ratio (test line signal over con-
trol line signal) as the read-out measure, the mHAT 
app limits of detection increased slightly but not signifi-
cantly (Fig. 3C). The limits of detection were found to be 
23.2 ± 8 parasites/μL and 20.9 ± 6 parasites/μL while the 
EQEQuant LFR was found to have a limit of detection of 
6.15 ± 2 parasites/μL.

Quantification of data reporting and aggregation in active 
case detection
For the 14 satellite clinics operated by MRT, surveil-
lance data are aggregated by mobile messaging. MRT is 
not immune to the variety of challenges that arise with 
data collection in low-resource settings, and this work 
sought to quantify the impact of these obstacles. Physi-
cal records of malaria RDT data are summarized by com-
munity healthcare workers (CHWs) at each clinic and 
reported by SMS every Monday. To assess the temporal 
efficacy of this system, SMS records were collected span-
ning the period between November 2018 and February 
2019. Of the 96 weeks of data analysed, only 54.6% of the 
data packages were received on the Monday expected 
(Fig. 4A). When data were received late, typically within 
1–2 days of when expected, but over 25% of the time the 
report was received over a week late.

When analysing physical data from January 2017 to 
February 2019, it was found that most weekly data pack-
ets were reported correctly and required no revision by 
the verification team; however, 36% of the weekly data 
points did require correction (Fig.  4B). Of the weeks in 
which data were corrected, most required at least two 
data points to be corrected, and almost half required 
three or more points to be corrected. The most common 
error observed was incorrect entry, where the counts 
were correct but correct numbers for two categories 
(e.g.  positive RDT, negative RDT) had been exchanged. 
Approximately 6% of data were not verified at the time 
of analysis due to external causes, including environmen-
tal factors that limited the ability of the verification team 
to reach clinics, physical damage to clinic records, or lost 
records.

mHAT application field performance
The most common method for RDT analysis in the field 
is visual inspection. It has been demonstrated that visual 

inspection of RDTs varies with CHW experience [37]. 
The healthcare workers in and around MRT have a high 
level of familiarity with malaria RDTs, and thus, for this 
study the mHAT app was compared to visual interpre-
tation of RDTs by these experienced CHWs as a gold 
standard. All RDTs were identified as positive or nega-
tive by a CHW at the point of care, and validated by the 
researcher using the mHAT app. Iterative improvement 
of the image analysis software was required over the span 
of the trial to account for differences between photo qual-
ity in a controlled laboratory setting and the field (Addi-
tional file 1: Fig. S2).

In this analysis, both the signal at the test line and the 
ratio of test line and control line signal were evaluated as 
potential read-out values and ideal thresholds for each 
signal metric were determined (Fig.  5, Additional file  1: 
Fig. S3). Both values were assessed on iOS and Android 
devices.

Test line to control line signal ratio was utilized as 
the determinant for mHAT test results. While signifi-
cant batch-to-batch variation between RDTs was not 
observed, the decision to use signal ratio as a metric 
rather than test line signal alone offers protection from 
this issue, as has been documented previously [38]. Sen-
sitivity for signal ratio analysis on iOS devices was found 
to be 94.6% (CI 81.8, 99.3) and specificity was 88.6% 
(CI 73.3, 96.8). Using an Android device, sensitivity was 
94.6% (CI 81.8, 99.3) and specificity was 95.6% (CI 78.1, 
99.9). When both device types were analysed, the com-
bined sensitivity was then observed to be 94.6% (CI 81.1, 
99.3) and specificity was 88.6% (CI 73.3, 96.8). Positive 
predictive value (PPV) and negative predictive value 
(NPV) for the mHAT app were observed to be 0.923 and 
0.952, respectively.

Discussion
In this study, mHAT, a mobile health tool for improv-
ing surveillance campaigns through a mobile-friendly 
web application that automates the analysis and report-
ing of point-of-care diagnostic tests, was developed and 
analysed. This pilot study was performed in Macha, 
Zambia in order to understand how the app could com-
plement existing surveillance campaigns. The MRT 
has had success in decreasing the malaria burden in 
the region through active and reactive case detection 
and has implemented the standards set out by WHO 
with regard to data collection, reporting and verifica-
tion [10]. To ensure reporting data accuracy, MRT has 
established an independent data validation team, which 
works to authenticate collected surveillance data on 
a quarterly basis. It was anecdotally known that data 
collection before validation was occasionally subject 
to time delays and misinformation, possibly caused 
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by input from multiple disparate healthcare workers 
or physical damage or loss of records, but this delay 
had not been previously quantified. While the valida-
tion technique used by MRT has proven to be success-
ful, many low-resource settings will not have access to 
resources of this type and may not be able to validate 
data with the required level of rigour, leaving their 
reporting open to delays and inaccuracies. These delays 
and inaccuracies could be due to any number of factors, 
including the number of patients being seen at each 
clinic, seasonal environmental factors, or weak mobile 
phone signal for SMS data aggregation.

The mHAT app was utilized, in both a laboratory set-
ting and in a small pilot field study, to perform automated 
objective RDT analysis, data collection and reporting. 
mHAT was found to have a limit of detection as low 
as 15 parasites/μL of whole blood, comparable to that 
of a commercial lateral flow reader in the laboratory. 
The mHAT app was also shown to have little variation 
between mobile phone types, with comparable limits 
of detection observed not only between mobile phones 
and the commercial lateral flow reader, but also between 
the two distinct brands. The two mobile devices used in 
this study have substantially different camera hardware 

Fig. 4 A Percentage of reported surveillance data that was received after the expected date of arrival. The box to the right shows the histogram of 
late reports binned by the number of days past the due date at which the data was received. B Percentage of recorded surveillance data that was 
revised upon review by the MRT remote verification team. The box to the left shows the histogram of revised data points binned by the number of 
data points altered per report
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(iPhone 8 + , 12 MP camera with dual lens; Samsung Gal-
axy J3, 8 MP camera), and previous work has shown that 
similar algorithms are also effective when using earlier 
model devices that have lower resolution cameras [37]. 
Additionally, mHAT performed with high sensitivity 
(> 90%) and specificity (> 85%) compared to visual inspec-
tion of tests in the field. However, it is necessary to note 
that malaria RDTs are generally intended to be qualita-
tive tests, reliant on the interpretation of the presence or 
absence of coloured signals at the test line [37, 39, 40]. 
Although test line signal intensity generally tracks with 
parasite density, the result should be considered only a 
semi-quantitative analysis of the RDT itself. Despite this, 
the app is ideal for low-resource uses because it requires 
minimal training, provides results in seconds [41], and 
automatically collates RDT data into a single accessible 
database without the errors that can arise in manual data 
recording. While REDCap was utilized for data storage, 
this platform could easily be modified for compatibility 
with any existing record system, including DHIS2, Open-
MRS or mUZIMA.

In addition to the flexibility mHAT offers, the app has 
several strengths, including minimal up-front invest-
ments in trained personnel or infrastructure and rela-
tively low operating costs. The app requires no further 
instrumentation (e.g., readers, dongles, phone attach-
ments) than a camera-enabled smartphone, which, as 
outlined earlier, can easily be found in many LIMC set-
tings (Fig. 1). Data use for this app is low, and can cost 
below US$1 per week [41]. However, the main limita-
tion of the current version of the mHAT software is 

that it does require a consistent internet connection, 
which may not be available in all settings where RDT 
analysis is performed. In order to address this short-
coming, both mobile and web-based applications will 
be developed that are capable of offline operations and 
asynchronous data transfer for use in instances where 
dependable internet access cannot be maintained.

Although the focus in this publication centered on 
the accuracy of the results generated by the mHAT app, 
and the comparison to traditional surveillance report-
ing systems, there are many additional features that 
make mHAT a complete surveillance tool. These fea-
tures include: healthcare worker training guides, case 
maps, timelines, calendars, a user hierarchy which 
allows for delineation of privileges, administrator 
access and an administrator dashboard for user moni-
toring, secure authentication, transmission, and stor-
age of data. Combined, these features represent a rapid, 
fully functional, user-friendly mobile healthcare experi-
ence. The targeted use-case for this application was for 
low-resource disease surveillance. However, with little 
additional effort, it could have immediate relevance to 
the current COVID-19 pandemic, which has resulted 
in dozens of RDTs receiving Emergency Authorization 
Use status from the US Food and Drug Administration. 
This further underscores the importance of support for 
global health initiatives and their ability to drive inno-
vation that can have unexpected positive impacts, even 
in domestic settings.

Conclusion
Diagnostic data collection and aggregation is a major 
challenge in malaria surveillance efforts. Mobile health 
initiatives are one approach to improving the timeliness 
and accuracy of field data reporting. In this study, the 
mHAT app was developed and field-tested to objec-
tively interpret malaria point-of-care diagnostic tests. 
The mHAT app was found to compare favourably to 
both the gold standard for field and laboratory-based 
RDT analysis. The numerous benefits of standardized 
LFA analysis and automated data aggregation represent 
a critical improvement for low-resource health facilities 
and could drastically improve the accuracy and speed 
of broad, long-term surveillance campaigns for malaria 
and other diseases.
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app when compared to visual interpretation of rapid diagnostic tests 
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test line signal as the reporting metric. For iOS devices, sensitivity using 
test line signal was found to be 91.9% (CI 78.1–98.3%) and specificity was 
found to be 91.4% (CI 76.9–98.2%). Using an Android device, sensitivity 
with test line signal was found to be 97.3% (CI 85.8–99.9%), and specificity 
95.6% (CI 78.1–99.9%). The combined sensitivity for iOS and Android 
devices was found to be 91.9% (CI 78.7–97.2%) and specificity was 91.4% 
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membrane (blood clearance), missing control line, physical damage to the 
test or casing (test defect), or interfering environmental defects.

Acknowledgements
The authors would like to acknowledge Ben Katowa and Saidon Mbambara 
for their preliminary contributions and support of this effort.

Authors’ contributions
In this study, CM designed the field study, directed its implementation, 
collected and analysed the data, and drafted the manuscript. TS developed 
the software, designed the study, directed its implementation, and helped 
draft the manuscript. JM, CS, and ML all assisted in designing the field study, 
as well as data collection and analysis. DW and PT helped design the study 
and directed its implementation. All authors read and approved the final 
manuscript.

Funding
This work was supported in part by Fogarty International Center at the 
National Institutes for Health (1R21TW010635) and the Burroughs Wellcome 
Fund Collaborative Research Travel Grant (Scherr, 2016). This work also used 
REDCap, which is supported by the National Center for Advancing Transla-
tional Sciences at the National Institutes for Health (UL1TR000445).

 Availability of data and materials
The datasets used and analysed during the current study are available from 
the corresponding author (TS) on reasonable request.

Declarations

Ethics approval and consent to participate
The study under which both the RDTs and the SMS data were collected was 
first approved by the TDRC Ethics Review Committee (ERC) on the 20th of Oct, 
2011 under reference TDRC/ERC/2010/14/11. This study was also reviewed 
and approved by the Vanderbilt University IRB (IRB #130684). All study partici-
pants gave written informed consent for sample collection for RDT testing.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, 
Nashville, TN 37212, USA. 2 Macha Research Trust, Choma District, Zambia. 

Received: 16 February 2021   Accepted: 16 May 2021

References
 1. WHO. World malaria report. Geneva, World Health. Organization. 

2019;2019:232.
 2. Alonso P, Noor AM. The global fight against malaria is at crossroads. 

Lancet. 2017;390:2532–4.
 3. Editorial. Malaria: control vs elimination vs eradication. Lancet. 

2011;378:1117.
 4. WHO. Malaria surveillance, monitoring & evalution: a reference manual. 

Geneva: World Health Organization; 2018.
 5. Bridges DJ, Winters AM, Hamer DH. Malaria elimination: surveillance and 

response. Pathog Glob Health. 2012;106:224–31.
 6. WHO. Disease surveillance for malaria control: an operational manual. 

Geneva: World Health Organization; 2012. 
 7. Wickremasinghe R, Fernando SD, Thillekaratne J, Wijeyaratne PM, Wickre-

masinghe AR. Importance of active case detection in a malaria elimina-
tion programme. Malar J. 2014;13:186.

 8. Smith Gueye C, Sanders KC, Galappaththy GN, Rundi C, Tobgay T, Sovan-
naroth S, et al. Active case detection for malaria elimination: a survey 
among Asia Pacific countries. Malar J. 2013;12:358.

 9. Sturrock HJW, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. 
Reactive case detection for malaria elimination: real-life experience from 
an ongoing program in Swaziland. PLoS ONE. 2013;8:e63830.

 10. Deutsch-Feldman M, Hamapumbu H, Lubinda J, Musonda M, Katowa B, 
Searle KM, et al. Efficiency of a malaria reactive test-and-treat program 
in Southern Zambia: a prospective, observational study. Am J Trop Med 
Hyg. 2018;98:1382–8.

 11. Silumbe K, Chiyende E, Finn TP, Desmond M, Puta C, Hamainza B, et al. 
A qualitative study of perceptions of a mass test and treat campaign 
in Southern Zambia and potential barriers to effectiveness. Malar J. 
2015;14:171.

 12. Searle KM, Hamapumbu H, Lubinda J, Shields TM, Pinchoff J, Kobayashi T, 
et al. Evaluation of the operational challenges in implementing reactive 
screen-and-treat and implications of reactive case detection strategies for 
malaria elimination in a region of low transmission in southern Zambia. 
Malar J. 2016;15:412.

 13. Graz B, Willcox M, Szeless T, Rougemont A. “Test and treat” or presumptive 
treatment for malaria in high transmission situations? A reflection on the 
latest WHO guidelines. Malar J. 2011;10:136.

 14. Zikusooka CM, McIntyre D, Barnes KI. Should countries implementing an 
artemisinin-based combination malaria treatment policy also introduce 
rapid diagnostic tests? Malar J. 2008;7:176.

 15. WHO. Model list of essential in vitro diagnostics. Geneva: World Health 
Organization; 2018.

 16. WHO. Tracking universal health coverage: global monitoring report. 
Geneva: World Health Organization; 2017.

 17. Okereke M, Ukor NA, Adebisi YA, Ogunkola IO, Iyagbaye EF, Owhor GA, 
et al. Impact of COVID-19 on access to healthcare in low- and middle-
income countries: current evidence and future recommendations. Int J 
Health Plann Manag. 2021;36:13–7.

 18. WHO. World Health Statistics. monitoring health for the sdgs, sustainable 
development goals. Geneva: World Health Organization; 2019. p. 2019.

 19. Bohren MA, Hunter EC, Munthe-Kaas HM, Souza JP, Vogel JP, Gülmezoglu 
AM. Facilitators and barriers to facility-based delivery in low- and middle-
income countries: a qualitative evidence synthesis. Reprod Health. 
2014;11:71.

 20. Varela C, Young S, Mkandawire N, Groen RS, Banza L, Viste A. Transporta-
tion barriers to access health care for surgical conditions in Malawi a cross 
sectional nationwide household survey. BMC Public Health. 2019;19:264.

 21. Steinhubl SR, Muse ED, Topol EJ. Can mobile health technologies trans-
form health care? JAMA. 2013;310:2395.

 22. Istepanian RSH, Al-Anzi T. Mobile health (m-health). In: Dagan Feng D, 
editor. Biomedical Information Technology. 2nd ed. Academic Press; 2020. 
p. 717–33.

 23. Jani LV, Quevedo JI, Tobaiwa O, Bolinger T, Sitoe N, Chongo P, et al. Use of 
mobile phone technology to improve the quality of point-of-care testing 
in a low-resource setting. AIDS. 2016;30:159–61.

https://doi.org/10.1186/s12936-021-03772-5
https://doi.org/10.1186/s12936-021-03772-5


Page 11 of 11Moore et al. Malar J          (2021) 20:237  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 24. International Telecommunication Union. Mobile cellular subscriptions 
(per 100 people). World Telecommunication/ICT Development Report 
and Database. https:// data. world bank. org/ indic ator/ IT. CEL. SETS. P2.

 25. Porter G. Mobilities in rural Africa: new connections, new challenges. Ann 
Am Assoc Geographers. 2016;106:434–41.

 26. Zurovac D, Talisuna AO, Snow RW. Mobile phone text messaging: tool for 
malaria control in Africa. PLoS Med. 2012;9:e1001176.

 27. Prue CS, Shannon KL, Khyang J, Edwards LJ, Ahmed S, Ram M, et al. 
Mobile phones improve case detection and management of malaria in 
rural Bangladesh. Malar J. 2013;12:48.

 28. Visser T, Ramachandra S, Pothin E, Jacobs J, Cunningham H, Ke Menach A, 
et al. A comparative evaluation of mobile medical APPS (MMAS) for read-
ing and interpreting malaria rapid diagnostic tests. Malar J. 2021;20:39.

 29. Wallis L, Blessing P, Dalwai M, Shin SD. Integrating mHealth at point of 
care in low- and middle-income settings: the system perspective. Glob 
Health Action. 2017;10:1327686.

 30. Harris PA. Research Electronic Data Capture (REDCap) - planning, col-
lecting and managing data for clinical and translational research. BMC 
Bioinformatics. 2012;13:A15.

 31. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research 
electronic data capture (REDCap)—a metadata-driven methodology and 
workflow process for providing translational research informatics sup-
port. J Biomed Inform. 2009;42:377–81.

 32. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The 
REDCap consortium_Building an international community of software 
platform partners. J Biomed Inform. 2019;95:103208.

 33. Wild D. The immunoassay handbook: theory and applications of ligand 
binding. ELISA and Related Techniques: Elsevier Science; 2013.

 34. Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, González IJ, et al. Thermal 
contrast amplification reader yielding 8-fold analytical improvement for 
disease detection with lateral flow assays. Anal Chem. 2016;88:11774–82.

 35. DeSousa J, Jorge M, Lindsay H, Haselton F, Wright D, Scherr T. Inductively 
coupled plasma optical emission spectroscopy as a tool for evaluating 
lateral flow assays. Anal Methods. 2021;13;2137–46.

 36. Markwalter CF, Kantor AG, Moore CP, Richardson KA, Wright DW. Inor-
ganic complexes and metal-based nanomaterials for infectious disease 
diagnostics. Chem Rev. 2019;119:1456–518.

 37. Scherr TF, Gupta S, Wright DW, Haselton FR. Mobile phone imaging and 
cloud-based analysis for standardized malaria detection and reporting. 
Sci Rep. 2016;6:28645.

 38. Colley DG, King CH, Kittur N, Ramzy RMR, Secor WE, Fredericks-James 
M, et al. Evaluation, validation, and recognition of the point-of-care 
circulating cathodic antigen, urine-based assay for mapping Schistosoma 
mansoni infections. Am J Trop Med Hyg. 2020;103:42–9.

 39. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria diagnosis: 
a brief review. Korean J Parasitol. 2009;47:93–102.

 40. Mukkala AN, Kwan J, Lau R, Harris D, Kain D, Boggild AK. An update on 
malaria rapid diagnostic tests. Curr Infect Dis Rep. 2018;20:49.

 41. Scherr TF, Moore CP, Thuma P, Wright DW. Evaluating network readi-
ness for mHealth interventions using the Beacon Mobile Phone App: 
application development and validation study. JMIR MHealth UHealth. 
2020;8:e18413.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://data.worldbank.org/indicator/IT.CEL.SETS.P2

	mHAT app for automated malaria rapid test result analysis and aggregation: a pilot study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	mHAT application
	Laboratory RDT image-processing, training and validation
	RDT collection and imaging in Southern Zambia
	mHAT optimization for field performance
	Analysis of current data collection and aggregation systems
	Statistical analysis

	Results
	mHAT RDT reader performance validation
	Quantification of data reporting and aggregation in active case detection
	mHAT application field performance

	Discussion
	Conclusion
	Acknowledgements
	References




